Practical Pharmacology

Drug Dosage Calculation

Definition:

- Dose: Is the amount of medication measured (mg, mL).
- Dosage: Is the amount of medication based on units per weight of the animal (50 $\mathrm{mg} / \mathrm{kg}, 10 \mathrm{~mL} / \mathrm{kg}$)
- The concentration of the drug is calculated by the manufacturer ($\mathrm{mg} / \mathrm{mL}, \mathrm{mg} / \mathrm{tablet}$)

METRIC CONVERSIONS

Metric weights and measurements involve a step-by-step conversion from one unit to another. With weight we often convert to smaller (and more numerous units) thus:
(1)Kg— gm -mg-mcg \qquad Ex, Augmentin 1.2gm = ?mcg \qquad Sol. $=1,200,000 \mathrm{mcg}$

Lbs./ 2.2 = Kg. \qquad $\operatorname{Kg} \times 2.2=$ Lbs. or $\bullet(\operatorname{Kg} \times 2)+10 \%=$ Lbs.
(2) L. ---- ml \qquad 1 Liter $=1000 \mathrm{ml}$.
(3) Units \& Millequivalents: As mg and gm were quantities to measure the weight of medicine , unit (U, u) and $m E q$ also represent a measurement of a given medicine.
-1 Grain (gr.) = 60 Milligrams (mg)

- To convert gr. to mg multiply gr. by 60 - To convert mg to gr. divide mg. by 60 .
$\bullet 1 \mathrm{ml}=1 \mathrm{cc}$.
- 1 ounce $=30 \mathrm{ml}$.
- 1 tablespoon (T or tbsp) $=15 \mathrm{ml}$.
- 1 teaspoon (t or tsp) $=5 \mathrm{ml}$.
- $2.2 \mathrm{lb}=1 \mathrm{~kg}$.
- To convert pounds to kg divide pounds by 2.2 ,To convert kg to pounds multiply by 2.2

Abbreviations:

- cc- cubic centimeter.
- DD- Desired Dose.
- gm- gram.
- gtt- drop/drops.

Desired Dose: The amount of a particular medication to be administered.

Ex;1: A hypotensive patient needs to be given Dopamine at $10 \mu \mathrm{~g} / \mathrm{kg} /$ minute. The patient weight is 220 Lbs.
$1,000 \mu \mathrm{~g} / \mathrm{min}$ is the desired dose.
2: A physician orders 25 mg of Benadryl to a patient with itching and hives. Benadryl is supplied $50 \mathrm{mg} / 2 \mathrm{cc}$. What is the DD? \qquad 25 mg

3: A pediatric patient is to receive Atropine $.02 \mathrm{mg} / \mathrm{kg}$. The patient weight is 18 Kg . What is the DD? \qquad .36 mg

Concentration: The conc. is found by dividing the weight by the volume. (Ex: $50 \mathrm{mg} / 2 \mathrm{~mL}$)
Ex; 1: Phenergan is ordered 12.5 mg . It is supplied $25 \mathrm{mg} / 2 \mathrm{~mL}$. What is the Concentration? - $12.5 \mathrm{mg} / \mathrm{mL}$

2: Diazepam is ordered 5 mg . It is supplied $10 \mathrm{mg} / 2 \mathrm{~mL}$. What is the concentration?

- $5 \mathrm{mg} / \mathrm{mL}$

There are $10,000 \mathrm{U}$ in 1 cc .

Calculating the (mL, mg) to be given

Ratio- Proportion Formula:

Dosage on hand $=$ Dosage desired

Active Ingredient in dose on hand Active Ingredient in desired dose
\qquad
\qquad
Vehicle of dose on hand
Vehicle of desired dose

> Ex: Morphine each ml contain 8 mg , and you must administer 2 mg . how much fluid volume will you draw to syringe to administer this dose?

- There is a very simple mathematical equation to calculate the mL, mg to be given:

$$
(\mathrm{D} / \mathrm{H}) \times \mathrm{Q}
$$

- Dose you want to give ($\mathrm{mg} / \mathrm{mcg}$)
- What do you Have it supplied in $(\mathrm{mg} / \mathrm{mcg})$
- What Quantity does it come in (mL)

Phenergan is ordered 12.5 mg . It is supplied $25 \mathrm{mg} / 2 \mathrm{~mL}$. How many mL will you need to give? $\bullet(12.5 \mathrm{mg} / 25 \mathrm{mg}) \times 2 \mathrm{~mL} \bullet .5 \mathrm{mg} \times 2 \mathrm{~mL} \bullet 1 \mathrm{~mL}$

Ex;1: Lidocaine is ordered $1 \mathrm{mg} / \mathrm{kg}$ to a patient that weighs 150 Lbs . It is supplied $100 \mathrm{mg} / 5$ mL . How many mL will you need to give? \qquad - 3.4 mL

Ex;2: Lasix is ordered 40 mg IVP. It is supplied $100 \mathrm{mg} / 3 \mathrm{~mL}$. How many mL will you need to give? \qquad - 1.2 mL

Ex;3: Physician orders 500 mg of ibuprofen (desired Dose) for a patient and you have 250 mg (Quantity on Hand) tablets (Quantity of solution) on hand.

Ex;4: Physician orders 1500 mg of liquid ibuprofen for a patient. Quantity of Ibuprofen is 500 mg in 1 cc , how much will you administer?

Solution: $1500 \mathrm{mg} \div 500 \mathrm{mg} \times 1 \mathrm{cc}=\mathbf{3} \mathrm{cc}$ Answer: $\mathbf{3} \mathrm{cc}$

